## Processing Advantages of Eng-weight

Lei Liu
Leipzig University
lei.liu@uni-leipzig.de
leiliu.net

SCiL2023
June 15, 2023
updated on June 25, 2023

The presentation in bullet points:

The presentation in bullet points:

- End-weight configuration facilitates processing.

The presentation in bullet points:

- End-weight configuration facilitates processing.
- The facilitation effect is accounted for by the memory resources needed to parse the end-weight syntactic tree.

The presentation in bullet points:

- End-weight configuration facilitates processing.
- The facilitation effect is accounted for by the memory resources needed to parse the end-weight syntactic tree.
- This memory-based account has implications on the opposite, initial-weight preferences.


## Outline

1. Introduction

- End Weight
- MG Parsing

2. Parsing End-weight Configurations

■ End-weight in Heavy NP Shift
■ End-weight in Particle Verb
3. Discussion

## Intro: Heavy NP Shift

- English heavy NP shift (HNPS)


## Intro: Heavy NP Shift

- English heavy NP shift (HNPS)
(1) a. Emma explained [ po the regulations] to [ıo Jim].


## Intro: Heavy NP Shift

- English heavy NP shift (HNPS)
(1) a. Emma explained [po the regulations] to [ıo Jim].
b. Emma explained to [ıo Jim] [ро all the regulations regarding import and export taxes for pottery].


## Intro: Heavy NP Shift

- English heavy NP shift (HNPS)
(1) a. Emma explained [po the regulations] to [ıo Jim].
b. Emma explained to [ıo Jim] [Do all the regulations regarding import and export taxes for pottery].
c. ? Emma explained to [ı Jim] [ро the regulations].
(Stallings and MacDonald 2011)


## Intro: Heavy NP Shift

- English heavy NP shift (HNPS)
(1) a. Emma explained [po the regulations] to [ıo Jim].
b. Emma explained to [ıo Jim] [Do all the regulations regarding import and export taxes for pottery].
c. ? Emma explained to [ı Jim] [ро the regulations].
(Stallings and MacDonald 2011)
$\rightarrow$ HNPS order (Verb-IO-DO) preferred when DO is heavy


## Intro: Particle Verb

- English Particle Verb


## Intro: Particle Verb

- English Particle Verb
(2) a. I looked up the word (in the dictionary).
b. I looked the word up (in the dictionary).


## Intro: Particle Verb

- English Particle Verb
(2) a. I looked up the word (in the dictionary).
b. I looked the word up (in the dictionary).
(3) a. ... I looked up [a person who answered a query I posted on the internet]...


## Intro: Particle Verb

- English Particle Verb
(2) a. I looked up the word (in the dictionary).
b. I looked the word up (in the dictionary).
(3) a. ... I looked up [a person who answered a query I posted on the internet]...
b. *I looked [a person who answered a query I posted on the internet] up...


## Intro: Particle Verb

- English Particle Verb
(2) a. I looked up the word (in the dictionary).
b. I looked the word up (in the dictionary).
(3) a. ... I looked up [a person who answered a query I posted on the internet]...
b. *I looked [a person who answered a query I posted on the internet] up...
(Cappelle 2005, 19)
$\rightarrow$ Joined order (Verb-particle-[object]) preferred when object is heavy


## Intro: End Weight

(4) a. Emma explained to [ı Jim] [Do all the ... for pottery].

> light heavy
b. I looked up [a person ... on the internet].
light heavy

## Intro: End Weight

(4) a. Emma explained to [ı Jim] [рo all the ... for pottery].
light heavy
b. I looked up [a person ... on the internet].
light heavy

- Heavy how?


## Intro: End Weight

(4) a. Emma explained to [ı Jim] [do all the ... for pottery].

> light heavy
b. I looked up [a person ... on the internet].
light heavy

- Heavy how?
- Syntactic structure matters


## Intro: End Weight

(4) a. Emma explained to [io Jim] [do all the ... for pottery].

> light heavy
b. I looked up [a person ... on the internet].
light heavy

- Heavy how?
- Syntactic structure matters
- Heavy relative to other constituents


## Intro: End Weight

(4) a. Emma explained to [io Jim] [do all the ... for pottery].

> light heavy
b. I looked up [a person ... on the internet].
light heavy

- Heavy how?
- Syntactic structure matters
- Heavy relative to other constituents
- Proposal:


## Intro: End Weight

(4) a. Emma explained to [io Jim] [do all the ... for pottery].
light heavy
b. I looked up [a person ... on the internet].
light heavy

- Heavy how?
- Syntactic structure matters
- Heavy relative to other constituents
- Proposal:
- End-weight preference follows from the processing difficulties associated with the syntactic structure of competing word orders.


## Intro: End Weight

(4) a. Emma explained to [io Jim] [do all the ... for pottery]. light heavy
b. I looked up [a person ... on the internet]. light heavy

- Heavy how?
- Syntactic structure matters
- Heavy relative to other constituents
- Proposal:
- End-weight preference follows from the processing difficulties associated with the syntactic structure of competing word orders.


## Intro: End Weight

(5) put [pp ...boxes...] [pp in...] canonical order

(6) put [pp in...] [DP ...boxes...] HNPS order


## Intro: End Weight

(5) put [Dp ...boxes...] [pp in...] canonical order

(6) put [pp in...] [DP ...boxes...] HNPS order

whoa!

## Minimalist Parsing

- Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).


## Minimalist Parsing

- Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
- lexical items


## Minimalist Parsing

- Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
- lexical items
- feature bundles


## Minimalist Parsing

- Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
- lexical items
- feature bundles
- \{phonetics, category, selection, movement\}


## Minimalist Parsing

- Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
- lexical items
- feature bundles
- \{phonetics, category, selection, movement\}
- operations


## Minimalist Parsing

- Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
- lexical items
- feature bundles
- \{phonetics, category, selection, movement\}
- operations
- merge, move


## Minimalist parsing

Max :: $D^{-} \quad$ nom ${ }^{-}$ cat. mvmt<br>packed :: $D^{+} \quad V^{-}$ sel. cat.

boxes :: $D^{-}$ cat.

$$
\begin{aligned}
\mathrm{C}:: & T^{+} \quad C^{-} \\
& \text {sel. cat. }
\end{aligned}
$$

$$
\mathrm{T}:: v^{+} \quad \text { nom }^{+} T^{-}
$$

sel. mvmt cat.

$$
\mathrm{v}:: V^{+} \quad D^{+} \quad v^{-}
$$

sel. sel. cat.

## Minimalist parsing

```
Max :: D D nom
    cat. mvmt
packed :: D D
    sel. cat.
boxes :: D
        cat.
C :: T T
    sel. cat.
T :: v +
    sel. mvmt cat.
v:: V
    sel. sel. cat.
```


## Minimalist parsing

```
Max :: \(D^{-} \quad\) nom \({ }^{-}\)
    cat. mvmt
packed :: \(D^{+} \quad V^{-}\)
    sel. cat.
boxes :: \(D^{-}\)
        cat.
\(\mathrm{C}:: T^{+} \quad C^{-}\)
    sel. cat.
\(\mathrm{T}:: v^{+} \quad\) nom \(^{+} T^{-}\)
    sel. mvmt cat.
v:: \(V^{+} \quad D^{+} \quad v^{-}\)
    sel. sel. cat.
```


## Minimalist Parsing

- Minimalist Grammars (stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
(7) Max packed boxes.



## Minimalist Parsing

- Minimalist Grammars (stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
(7) Max packed boxes.



## Minimalist Parsing

- Minimalist Grammars (stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
(7) Max packed boxes.



## Minimalist Parsing

- Minimalist Grammars (stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
(7) Max packed boxes.



## Minimalist Parsing

- Minimalist Grammars (stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
(7) Max packed boxes.



## Minimalist Parsing

- Minimalist Grammars (stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
- Rightward movement possible
(Torr and Stabler 2016)
- Extraposer :: $D^{-} D^{+} v^{\sim}$
- no complexity increase


## Minimalist Parsing

- Minimalist Grammars (stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
- Rightward movement possible
(Torr and Stabler 2016)
- Extraposer :: $D^{-} D^{+} v^{\sim}$
- no complexity increase


## Minimalist Parsing

- Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
- Rightward movement possible
(Torr and Stabler 2016)
- Extraposer :: $D^{-} D^{+} v^{\sim}$
- no complexity increase
(8) put [pp in a car] [dp all the boxes...]



## Minimalist Parsing

- Minimalist Grammars (stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program
(Chomsky 2014).
- Rightward movement possible
(Torr and Stabler 2016)
- Extraposer :: $D^{-} D^{+} v^{\sim}$
- no complexity increase
- Head movement possible
(Kobele et al. 2013)
- also discussed later on


## Minimalist Parsing

A top-down parser for MGs (Stabler 2013, Graf et al. 2015a):

- takes as input a string with pronounced and unpronounced nodes,
- based on MG rules,
- outputs (derivation) trees


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- ${ }^{1} \mathrm{CP}_{2}$


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- ${ }^{1} \mathrm{CP}_{2}$
- index: when the parser puts the node in the memory


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- ${ }^{1} \mathrm{CP}_{2}$
- index: when the parser puts the node in the memory
- outdex: when the parser throws the node out of the memory


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- ${ }^{1} \mathrm{CP}_{2}$
- index: when the parser puts the node in the memory
- outdex: when the parser throws the node out of the memory
- Memory usage (Kobele et al. 2013, Graf et al. 2015b)


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- ${ }^{1} \mathrm{CP}_{2}$
- index: when the parser puts the node in the memory
- outdex: when the parser throws the node out of the memory
- Memory usage (Kobele et al. 2013, Graf et al. 2015b)
- Tenure: how long a parse item is held in memory


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- ${ }^{1} \mathrm{CP}_{2}$
- index: when the parser puts the node in the memory
- outdex: when the parser throws the node out of the memory
- Memory usage (Kobele et al. 2013, Graf et al. 2015b)
- Tenure: how long a parse item is held in memory
- Payload: how many items are held in memory throughout a parse


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- ${ }^{1} \mathrm{CP}_{2}$
- index: when the parser puts the node in the memory
- outdex: when the parser throws the node out of the memory
- Memory usage (Kobele et al. 2013, Graf et al. 2015b)
- Tenure: how long a parse item is held in memory
- Payload: how many items are held in memory throughout a parse
- Size: the length of movement dependencies


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- Memory usage formalized: complexity metrics (Kobele et al. 2013, Graf et al. 2015b)


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- Memory usage formalized: complexity metrics (Kobele et al. 2013, Graf et al. 2015b)
- MaxT $:=\max ($ tenure-of $(n) \mid n \in T)$


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- Memory usage formalized: complexity metrics (Kobele et al. 2013, Graf et al. 2015b)
- MaxT $:=\max ($ tenure-of $(n) \mid n \in T)$


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- Memory usage formalized: complexity metrics (Kobele et al. 2013, Graf et al. 2015b)
- MaxT $:=\max ($ tenure-of $(n) \mid n \in T)=3$


## Minimalist Parsing



- An annotated tree is a record of the parser's behavior
- Memory usage formalized: complexity metrics (Kobele et al. 2013, Graf et al. 2015b)
- MaxT $:=\max ($ tenure-of $(n) \mid n \in T)=3$

SumT $:=\sum_{n \in T}$ tenure-of $(n)=6$

## Parsing End-weight - HNPS

(9) a. Max put [DP boxes] [pp in a car].
b. Max put [pp in a car] [dp boxes].
(short-DP short-PP) (short-PP short-DP)
(10) a. Max put [DP boxes] [pp in a car made in Stuttgart]. (short-DP long-PP)
b. Max put [pp in a car made in Stuttgart] [dp boxes]. (long-PP short-DP)
(11) a. Max put [ DP all the boxes of home furnishings] [ PP in a car].
b. Max put [pp in a car] [ DP all the boxes of home furnishings].
(12) a. Max put [DP all the boxes of home furnishings] [pp in a car made in Stuttgart].
(long-DP long-PP)
b. Max put [ PP in a car made in Stuttgart] [ DP all the boxes of home furnishings].
(long-PP long-DP)

## Parsing End-weight - HNPS

| Weight config. | Shift advantage? | Parser prediction |
| :--- | :---: | :--- |
| Both light | No | No |
| Heavy PP | No | No |
| Heavy NP | Yes | Yes (MaxT: 8 vs. 12) |
| Both Heavy | No | No (Maxт: 14 vs. 12) |

Table 1: Summary of the predictions for each weight configuration in object shift constructions

## Parsing End-weight - HNPS

(13) put [DP ...boxes...] [pp in...] canonical order

(14) put [pp in...] [DP ...boxes...] HNPS order


## Parsing End-weight - HNPS

(13) put [DP ...boxes...] [pp in...] canonical order

(14) put [pp in...] [DP ...boxes...] HNPS order


- Weight $\rightarrow$ Steps


## Parsing End-weight - HNPS

(13) put [DP ...boxes...] [pp in...] canonical order

(14) put [pp in...] [DP ...boxes...] HNPS order


- Weight $\rightarrow$ Steps
- MaxT: 12/V’ (canonical)


## Parsing End-weight - HNPS

(13) put [DP ...boxes...] [pp in...] canonical order

(14) put [pp in...] [DP ...boxes...] HNPS order


- Weight $\rightarrow$ Steps
- MaxT: 12/V' (canonical) > 8/DP (HNPS)


## Parsing End-weight - HNPS

(13) put [DP ...boxes...] [pp in...] canonical order

(14) put [pp in...] [DP ...boxes...] HNPS order


- Weight $\rightarrow$ Steps
- MaxT: 12/V' (canonical) > 8/DP (HNPS) $\rightarrow$ end-weight preferred!


## Parsing End-weight - HNPS

(13) put [DP ...boxes...] [pp in...] canonical order

(14) put [pp in...] [DP ...boxes...] HNPS order


- Weight $\rightarrow$ Steps
- MaxT: 12/V' (canonical) $>$ 8/DP (HNPS) $\rightarrow$ end-weight preferred!
- MaxT(DP) grows with V'


## Parsing End-weight - HNPS

(13) put [DP ...boxes...] [pp in...] canonical order

(14) put [pp in...] [DP ...boxes...] HNPS order


- Weight $\rightarrow$ Steps
- MaxT: 12/V' (canonical) $>$ 8/DP (HNPS) $\rightarrow$ end-weight preferred!
- MaxT(DP) grows with $\mathrm{V}^{\prime} \rightarrow$ relative weight!


## Parsing End-weight - HNPS

(13) put [DP ...boxes...] [pp in...] canonical order

(14) put [pp in...] [DP ...boxes...] HNPS order


- Weight $\rightarrow$ Steps
- MaxT: 12/V' (canonical) $>$ 8/DP (HNPS) $\rightarrow$ end-weight preferred!
- MaxT(DP) grows with $\mathrm{V}^{\prime} \rightarrow$ relative weight!


## Parsing End-weight - PV

(15) short DP
a. Chris put on a hat.
b. Chirs put a hat on.
(16) [mod-DP]
a. Chris put on a very very very very expensive hat.
b. Chirs put a very very very very expensive hat on.
(17) [DP-mod]
a. Chris put on a hat which Alex made with love.
b. Chris put a hat which Alex made with love on.

## Parsing End-weight - PV

| Weight config. | Joined advt? | MG parser |
| :--- | :---: | :--- |
| Short DP | No/Unclear | Yes (MaxT 5 vs. 6) |
| $[\bmod -\mathrm{DP}]$ | Yes | Yes (MaxT 10 vs. 16 ) |
| $[$ DP-mod] | Yes | Yes (MaxT 8 vs. 24) |

Table 2: Summary of the predictions for each weight configuration in particle verb constructions

## Parsing End-weight - PV

(18) put on a very very...hat. Joined order

(19) put a very very...hat on. Separated order

## Parsing End-weight - PV

(18) put on a very very...hat. Joined order


- MaxT: 10/hat (Joined)
(19) put a very very...hat on. Separated order



## Parsing End-weight - PV

(18) put on a very very...hat. Joined order

(19) put a very very...hat on. Separated order

- MaxT: 10/hat (Joined) < 16/on (Separated.)


## Parsing End-weight - PV

(18) put on a very very...hat. Joined order

(19) put a very very...hat on. Separated order

## Parsing End-weight - PV



$\cdots 26$

## (21) V-to- $v$ on right. Joined order

## Parsing End-weight - PV

(20) V-to- $v$ on left.
Joined order
(21) V-to- $v$ on right. Joined order



- V-to-v landing site affects tenure, but not processing prediction


## Discussion

Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

## Discussion

## Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomena:


## Discussion

Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomena:
- English end-weight preferences


## Discussion

## Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomena:
- English end-weight preferences
- Syntactic structures:


## Discussion

Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomena:
- English end-weight preferences
- Syntactic structures:
- HNPS: rightward movement

Complexity metric

- PV: particle stranding



## Discussion

## Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomena:
- English end-weight preferences
- Syntactic structures:
- HNPS: rightward movement $\searrow$

Complexity metric

- PV: particle stranding

- $\rightarrow$ End-weight preference follows from the processing difficulties associated with the syntactic structure of competing word orders.


## Discussion

Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

## Discussion

## Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomenon:


## Discussion

Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomenon:
- Japanese initial-weight preference


## Discussion

Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomenon:
- Japanese initial-weight preference
- Syntactic structures:


## Discussion

Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomenon:
- Japanese initial-weight preference
- Syntactic structures:
- Scrambling
- Base-generation



## Discussion

Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomenon:
- Japanese initial-weight preference
- Syntactic structures:
- Scrambling

- Base-generation


## Discussion

Processing phenomena $\leftrightarrow$ Complexity metrics $\leftrightarrow$ Syntactic structure

- Processing phenomenon:
- Japanese initial-weight preference
- Syntactic structures:
- Scrambling

- Base-generation

Thank you!

## References i

Cappelle, B. (2005). Particle patterns in english: A comprehensive coverage.
Chomsky, N. (2014). The minimalist program. MIT press.
Graf, T. (2013). Local and transderivational constraints in syntax and semantics. PhD thesis, UCLA.
Graf, T., Fodor, B., Monette, J., Rachiele, G., Warren, A., and Zhang, C. (2015a). A refined notion of memory usage for minimalist parsing. In Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015), pages 1-14, Chicago, USA. Association for Computational Linguistics.

Graf, T., Fodor, B., Monette, J., Rachiele, G., Warren, A., and Zhang, C. (2015b). A refined notion of memory usage for minimalist parsing. In Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015), pages 1-14.
Kobele, G. M., Gerth, S., and Hale, J. (2013). Memory resource allocation in top-down minimalist parsing. In Formal Grammar, pages 32-51. Springer.
Stabler, E. (1996). Derivational minimalism. In International Conference on Logical Aspects of Computational Linguistics, pages 68-95. Springer.
Stabler, E. P. (2011). Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, pages 617-643.
Stabler, E. P. (2013). Two models of minimalist, incremental syntactic analysis. Topics in cognitive science, 5(3):611-633.
Stallings, L. M. and MacDonald, M. C. (2011). It's not just the "heavy np": relative phrase length modulates the production of heavy-np shift. Journal of psycholinguistic research, 40(3):177-187.
Torr, J. and Stabler, E. (2016). Coordination in minimalist grammars: Excorporation and across the board (head) movement. In Proceedings of the 12th international workshop on tree adjoining grammars and related formalisms (TAG+ 12), pages 1-17.

## No/Unclear Short PV?

(22) put on a hat

(23) put a hat on


- truly default order?
- other factors?


## MG parser in action

## (24) •C Max T v packed boxes.

```
Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step 3 C is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step }6\mathrm{ vP expands to Max and v'
Step 7 Max is found
Step 8 T is found
Step 9 v
Step 10 v is found
look for packed
Step 11 VP expands to packed and boxes look for packed
Step 12 packed is found look for boxes
Step 13 boxes is found
done
```



## MG parser in action

## (24) •C Max T v packed boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step 3 C is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step 6 vP expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 v^{\prime}$ expands to $v$ and VP
Step $10 v$ is found
Step 11 VP expands to packed and boxes look for packed
Step 12 packed is found
Step 13 boxes is found
look for C
look for C
look for Max
look for Max
look for Max
look for Max
look for T
look for $v$
look for $v$
look for packed
look for boxes
done


## MG parser in action

## (24) •C Max T v packed boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step 3 C is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step $6 \quad v P$ expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 v^{\prime}$ expands to $v$ and VP
Step $10 v$ is found
Step 11 VP expands to packed and boxes look for packed
Step 12 packed is found
Step 13 boxes is found
look for C
look for C
look for Max
look for Max
look for Max
look for Max
look for T
look for $V$
look for $v$
look for packed
look for boxes
done


## MG parser in action

## (24) •C Max T v packed boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step 3 C is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step 6 vP expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 \quad v^{\prime}$ expands to $v$ and VP
Step $10 v$ is found
Step 11 VP expandsto
VP expands to packed and boxes look for packed
Step 12 packed is found look for boxes
Step 13 boxes is found
look for C
look for C
look for Max
look for Max
look for Max
look for Max
look for T
look for $v$
look for $v$
look for packed
done

packed boxes

## MG parser in action

## (24) •C Max T v packed boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step 3 C is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step 6 vP expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 \quad v^{\prime}$ expands to $v$ and VP
Step $10 v$ is found
Step 11 VP expands
VP expands to packed and boxes look for packed
Step 12 packed is found look for boxes
Step 13 boxes is found
look for C
look for C
look for Max
look for Max
look for Max
look for Max
look for T
look for $v$
look for $v$
look for packed
done


## MG parser in action

## (24) C $\bullet$ Max T $v$ packed boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step $3 C$ is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step $6 \quad v P$ expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 \quad v^{\prime}$ expands to $v$ and VP
Step $10 v$ is found
Step 11 VP expands to
Step 11 expands to packed and boxes look for packed
Step 12 packed is found
Step 13 boxes is found
look for C
look for C look for Max look for Max
look for Max
look for Max
look for T
look for $v$
look for $v$
look for packed
look for boxes
done


## MG parser in action

## (24) C $\bullet$ Max T $v$ packed boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step $3 C$ is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step 6 vP expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 \quad v^{\prime}$ expands to $v$ and VP
Step $10 v$ is found
Step 11 VP expands to
VP expands to packed and boxes look for packed
Step 12 packed is found
Step 13 boxes is found
look for C
look for C
look for Max
look for Max
look for Max
look for Max
look for T
look for $v$
look for $v$
look for packed
look for boxes
done


## MG parser in action

## (24) C $\bullet$ Max T $v$ packed boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step $3 C$ is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step $6 \quad v P$ expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 \quad v^{\prime}$ expands to $v$ and VP
Step $10 v$ is found
Step 11 VP expands to packed
VP expands to packed and boxes look for packed
Step 12 packed is found look for boxes
Step 13 boxes is found
look for C
look for C look for Max look for Max look for Max look for Max look for T
look for $v$
look for $v$
look for packed
done


## MG parser in action

## (24) C $\bullet$ Max T $v$ packed boxes.



## MG parser in action

## (24) C $\bullet$ Max T $v$ packed boxes.



## MG parser in action

## (24) C • Max T $v$ packed boxes.

| Step 1 | CP is conjectured | look for C |
| :---: | :---: | :---: |
| Step 2 | CP expands to C and TP | look for C |
| Step 3 | $C$ is found | look for Max |
| Step 4 | TP expands to TP | look for Max |
| Step 5 | TP expands to T and vP | look for Max |
| Step 6 | $v \mathrm{P}$ expands to Max and $v^{\prime}$ | look for Max |
| Step 7 | Max is found | look for T |
| Step 8 | T is found | look for $v$ |
| Step 9 | $v^{\prime}$ expands to $v$ and VP | look for $v$ |
| Step 10 | $v$ is found | look for packed |
| Step 11 | VP expands to packed and boxes | look for packed |
| Step 12 | packed is found | look for boxes |
| Step 13 | boxes is found | done |



## MG parser in action

## (24) C • Max T $v$ packed boxes.

| Step 1 | CP is conjectured | look for C |
| :---: | :---: | :---: |
| Step 2 | CP expands to C and TP | look for C |
| Step 3 | $C$ is found | look for Max |
| Step 4 | TP expands to TP | look for Max |
| Step 5 | TP expands to T and vP | look for Max |
| Step 6 | $v \mathrm{P}$ expands to Max and $v^{\prime}$ | look for Max |
| Step 7 | Max is found | look for T |
| Step 8 | T is found | look for $v$ |
| Step 9 | $v^{\prime}$ expands to $v$ and VP | look for $v$ |
| Step 10 | $v$ is found | look for packed |
| Step 11 | VP expands to packed and boxes | look for packed |
| Step 12 | packed is found | look for boxes |
| Step 13 | boxes is found | done |



## MG parser in action

## (24) C • Max T $v$ packed boxes.



## MG parser in action

## (24) C • Max T $v$ packed boxes.



## MG parser in action

## (24) C Max $\bullet$ T $v$ packed boxes.



## MG parser in action

## (24) C Max T•v packed boxes.



## MG parser in action

## (24) C Max T•v packed boxes.



## MG parser in action

## (24) C Max T•v packed boxes.



## MG parser in action

## (24) C Max T•v packed boxes.



## MG parser in action

## (24) C Max T $v \bullet$ packed boxes.

| Step 1 | CP is conjectured | look for C |
| :--- | :--- | ---: |
| Step 2 | CP expands to C and TP | look for C |
| Step 3 | C is found | look for Max |
| Step 4 | TP expands to TP | look for Max |
| Step 5 | TP expands to T and vP | look for Max |
| Step 6 | vP expands to Max and $v^{\prime}$ | look for Max |
| Step 7 | Max is found | look for T |
| Step 8 | T is found | look for $v$ |
| Step 9 | $v^{\prime}$ expands to $v$ and VP | look for $v$ |
| Step 10 | $v$ is found | look for packed |
| Step 11 | VP expands to packed and boxes look for packed |  |
| Step 12 | packed is found | look for boxes |
| Step 13 | boxes is found |  |



## MG parser in action

## (24) C Max T $v \bullet$ packed boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step 3 C is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step 6 vP expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 \quad v^{\prime}$ expands to $v$ and VP
Step $10 v$ is found
look for C
look for C
look for Max
look for Max
look for Max
look for Max
look for T
look for $v$
look for $v$
step 11 VP expands to packed and boxes look for packed
Step 11 VP expands to packed and boxes look for packed
Step 12 packed is found look for boxes
Step 13 boxes is found
done


## MG parser in action

## (24) C Max T $v \bullet$ packed boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step 3 C is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step 6 vP expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 \quad v^{\prime}$ expands to $v$ and VP
look for C
look for C
look for Max
look for Max
look for Max
look for Max
look for T
look for $v$
look for $v$
Step $10 v$ is found
look for packed
Step 11 VP expands to packed and boxes look for packed
Step 12 packed is found
look for boxes
Step 13 boxes is found
done


## MG parser in action

## (24) C Max T $v \bullet$ packed boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step 3 C is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step 6 vP expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 \quad v^{\prime}$ expands to $v$ and VP
look for C
look for C
look for Max
look for Max
look for Max
look for Max
look for T
look for $v$
look for $v$
Step $10 \quad v$ is found
look for packed
Step 11 VP expands to packed and boxes look for packed
Step 12 packed is found
look for boxes
Step 13 boxes is found
done


## MG parser in action

## (24) C Max T $v$ packed • boxes.

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step 3 C is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step 6 vP expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 \quad v^{\prime}$ expands to $v$ and VP
Step $10 v$ is found
look for C
look for C
look for Max look for Max
look for Max
look for Max
look for T
look for $v$
look for $v$

Step 11 VP expands to packed and boxes look for packed
Step 12 packed is found look for boxes
Step 13 boxes is found
done


## MG parser in action

## (24) C Max T $v$ packed boxes. $\ltimes$

Step 1 CP is conjectured
Step 2 CP expands to C and TP
Step 3 is found
Step 4 TP expands to TP
Step 5 TP expands to T and vP
Step 6 vP expands to Max and $v^{\prime}$
Step 7 Max is found
Step 8 T is found
Step $9 \quad v^{\prime}$ expands to $v$ and VP
Step $10 v$ is found
look for C
look for C
look for Max
look for Max
look for Max
look for Max
look for T
look for $v$
look for $v$

Step 11 VP expands to packed and boxes look for packed
Step 12 packed is found look for boxes
Step 13 boxes is found
done


