Processing Advantages of Eng-weight

Lei Liu

Leipzig University lei.liu@uni-leipzig.de leiliu.net

SCiL2023 June 15, 2023 updated on June 25, 2023

1

• End-weight configuration facilitates processing.

1

- End-weight configuration facilitates processing.
- The facilitation effect is accounted for by the memory resources needed to parse the end-weight syntactic tree.

- End-weight configuration facilitates processing.
- The facilitation effect is accounted for by the memory resources needed to parse the end-weight syntactic tree.
- This memory-based account has implications on the opposite, initial-weight preferences.

Outline

- 1. Introduction
 - End Weight
 - MG Parsing
- 2. Parsing End-weight Configurations
 - End-weight in Heavy NP Shift
 - End-weight in Particle Verb
- 3. Discussion

• English heavy NP shift (HNPS)

- English heavy NP shift (HNPS)
- (1) a. Emma explained [$_{DO}$ the regulations] to [$_{IO}$ Jim].

- English heavy NP shift (HNPS)
- (1) a. Emma explained [$_{DO}$ the regulations] to [$_{IO}$ Jim].
 - b. Emma explained to [IO Jim] [DO all the regulations regarding import and export taxes for pottery].

- English heavy NP shift (HNPS)
- (1) a. Emma explained [$_{DO}$ the regulations] to [$_{IO}$ Jim].
 - b. Emma explained to [IO Jim] [DO all the regulations regarding import and export taxes for pottery].
 - c. ? Emma explained to [IO Jim] [DO the regulations].

(Stallings and MacDonald 2011)

- English heavy NP shift (HNPS)
- (1) a. Emma explained [$_{DO}$ the regulations] to [$_{IO}$ Jim].
 - b. Emma explained to [IO Jim] [DO all the regulations regarding import and export taxes for pottery].
 - c. ? Emma explained to [IO Jim] [DO the regulations].

(Stallings and MacDonald 2011)

→ HNPS order (Verb-IO-DO) preferred when DO is heavy

English Particle Verb

- English Particle Verb
- (2) a. I **looked up** the word (in the dictionary).
 - b. I **looked** the word **up** (in the dictionary).

- English Particle Verb
- (2) a. I **looked up** the word (in the dictionary).
 - b. I **looked** the word **up** (in the dictionary).
- (3) a. ... I **looked up** [a person who answered a query I posted on the internet]...

- English Particle Verb
- (2) a. I **looked up** the word (in the dictionary).
 - b. I **looked** the word **up** (in the dictionary).
- (3) a. ... I **looked up** [a person who answered a query I posted on the internet]...
 - b. *I **looked** [a person who answered a query I posted on the internet] **up**...

(Cappelle 2005, 19)

- English Particle Verb
- (2) a. I **looked up** the word (in the dictionary).
 - b. I **looked** the word **up** (in the dictionary).
- (3) a. ... I **looked up** [a person who answered a query I posted on the internet]...
 - b. *I **looked** [a person who answered a query I posted on the internet] **up**...

(Cappelle 2005, 19)

→ Joined order (Verb-particle-[object]) preferred when object is heavy

(4) a. Emma explained to [10 Jim] [Do all the ... for pottery]. light heavy

b. I looked up [a person ... on the internet]. light heavy

(4) a. Emma explained to [10 Jim] [Do all the ... for pottery]. light heavy

b. I looked up [a person ... on the internet]. light heavy

· Heavy how?

- (4) a. Emma explained to [10 Jim] [Do all the ... for pottery]. light heavy
 - b. I looked up [a person ... on the internet]. light heavy
- · Heavy how?
 - Syntactic structure matters

- (4) a. Emma explained to [10 Jim] [Do all the ... for pottery]. light heavy
 - b. I looked up [a person ... on the internet]. light heavy
- · Heavy how?
 - · Syntactic structure matters
 - · Heavy relative to other constituents

- (4) a. Emma explained to [10 Jim] [Do all the ... for pottery]. light heavy
 - b. I looked up [a person ... on the internet]. light heavy
- · Heavy how?
 - · Syntactic structure matters
 - · Heavy relative to other constituents
- Proposal:

(4) a. Emma explained to [10 Jim] [Do all the ... for pottery]. light heavy

b. I looked up [a person ... on the internet]. light heavy

- · Heavy how?
 - · Syntactic structure matters
 - · Heavy relative to other constituents
- Proposal:
 - End-weight preference follows from the processing difficulties associated with the syntactic structure of competing word orders.

- (4) a. Emma explained to [10 Jim] [D0 all the ... for pottery]. light heavy
 - b. I looked up [a person ... on the internet]. light heavy
- · Heavy how?
 - Syntactic structure matters
 - · Heavy relative to other constituents
- Proposal:
 - End-weight preference follows from the processing difficulties associated with the syntactic structure of competing word orders.

(5) put [DP ...boxes...] [PP in...] canonical order

(6) put [PP in...] [DP ...boxes...] HNPS order

(5) put [DP ...boxes...] [PP in...] canonical order

(6) put [PP in...] [DP ...boxes...] HNPS order

Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

• Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program

(Chomsky 2014).

lexical items

• Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program

- lexical items
 - feature bundles

Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

- lexical items
 - feature bundles
 - {phonetics, category, selection, movement}

• Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program

- lexical items
 - feature bundles
 - {phonetics, category, selection, movement}
- operations

• Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized grammar formalisms based on the Minimalist Program

- lexical items
 - feature bundles
 - {phonetics, category, selection, movement}
- operations
 - merge, move

Max :: D^- nom⁻ cat. mvmt packed :: $D^+ V^$ sel. cat. boxes :: $D^$ cat. $C :: T^+ C^$ sel.cat. $T :: v^+ nom^+ T^$ sel. mvmt cat. $v :: V^+ D^+ v^$ sel. sel. cat.

Max :: D^- nom⁻ cat. mvmt packed :: $D^+ V^$ sel. cat. boxes :: $D^$ cat. $C :: T^+ C^$ sel. cat. $T:: v^+ nom^+ T^$ sel. mvmt cat. $v :: V^+ \quad D^+ \quad v^$ sel. sel. cat.

Max :: D^- nom⁻ cat. mvmt packed :: $D^+ V^$ sel. cat. boxes :: D^{-} cat. $C :: T^+ C^$ sel. cat. $T:: v^+ nom^+ T^$ sel. mvmt cat. $v :: V^+ D^+ v^$ sel. sel. cat.

Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

(Chomsky 2014).

Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

(Chomsky 2014).
Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

(Chomsky 2014).

derivation tree

Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

(Chomsky 2014).

derivation tree

Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

(Chomsky 2014).

Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

(Chomsky 2014).

· Rightward movement possible

(Torr and Stabler 2016)

- Extraposer :: $D^- D^+ v^{\sim}$
- no complexity increase

Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

(Chomsky 2014).

· Rightward movement possible

(Torr and Stabler 2016)

- Extraposer :: $D^- D^+ v^{\sim}$
- no complexity increase

Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

(8)

(Chomsky 2014).

· Rightward movement possible

(Torr and Stabler 2016)

- Extraposer :: $D^- D^+ v^\sim$
- no complexity increase

Minimalist Grammars (Stabler 1996; 2011, Graf 2013): lexicalized
grammar formalisms based on the Minimalist Program

(Chomsky 2014).

· Rightward movement possible

(Torr and Stabler 2016)

- Extraposer :: $D^- D^+ v^{\sim}$
- · no complexity increase
- · Head movement possible

(Kobele et al. 2013)

· also discussed later on

A top-down parser for MGs (Stabler 2013, Graf et al. 2015a):

- · takes as input a string with pronounced and unpronounced nodes,
- based on MG rules,
- outputs (derivation) trees

• An annotated tree is a record of the parser's behavior

- An annotated tree is a record of the parser's behavior
- ¹CP₂

- An annotated tree is a record of the parser's behavior
- ¹CP₂
 - index: when the parser puts the node in the memory

- An annotated tree is a record of the parser's behavior
- ¹CP₂
 - index: when the parser puts the node in the memory
 - outdex: when the parser throws the node out of the memory

- An annotated tree is a record of the parser's behavior
- ¹CP₂
 - index: when the parser puts the node in the memory
 - outdex: when the parser throws the node out of the memory
- Memory usage (Kobele et al. 2013, Graf et al. 2015b)

- An annotated tree is a record of the parser's behavior
- ¹CP₂
 - index: when the parser puts the node in the memory
 - outdex: when the parser throws the node out of the memory
- Memory usage (Kobele et al. 2013, Graf et al. 2015b)
 - Tenure: how long a parse item is held in memory

- An annotated tree is a record of the parser's behavior
- ¹CP₂
 - index: when the parser puts the node in the memory
 - outdex: when the parser throws the node out of the memory
- Memory usage (Kobele et al. 2013, Graf et al. 2015b)
 - Tenure: how long a parse item is held in memory
 - Payload: how many items are held in memory throughout a parse

- An annotated tree is a record of the parser's behavior
- ¹CP₂
 - index: when the parser puts the node in the memory
 - outdex: when the parser throws the node out of the memory
- Memory usage (Kobele et al. 2013, Graf et al. 2015b)
 - Tenure: how long a parse item is held in memory
 - Payload: how many items are held in memory throughout a parse
 - Size: the length of movement dependencies

• An annotated tree is a record of the parser's behavior

- An annotated tree is a record of the parser's behavior
- Memory usage formalized: complexity metrics (Kobele et al. 2013, Graf et al. 2015b)

- An annotated tree is a record of the parser's behavior
- Memory usage formalized: complexity metrics (Kobele et al. 2013, Graf et al. 2015b)
- **MaxT** := $max(tenure-of(n)|n \in T)$

- An annotated tree is a record of the parser's behavior
- Memory usage formalized: complexity metrics (Kobele et al. 2013, Graf et al. 2015b)
- **MaxT** := $max(tenure-of(n)|n \in T)$

- An annotated tree is a record of the parser's behavior
- Memory usage formalized: complexity metrics (Kobele et al. 2013, Graf et al. 2015b)
- **MaxT** := $max(tenure-of(n)|n \in T) = 3$

- An annotated tree is a record of the parser's behavior
- Memory usage formalized: complexity metrics (Kobele et al. 2013, Graf et al. 2015b)
- **MaxT** := $max(tenure-of(n)|n \in T) = 3$

SumT := $\sum_{n \in T}$ tenure-of(n) = 6

(9) a. Max put [pp boxes] [pp in a car]. (short-DP short-PP) (short-PP short-DP) b. Max put [pp in a car] [pp boxes]. (10)a. Max put [pp boxes] [pp in a car made in Stuttgart]. (short-DP long-PP) b. Max put [pp in a car made in Stuttgart] [pp boxes]. (long-PP short-DP) (11)a. Max put [pp all the boxes of home furnishings] [pp in a car]. (heavy NP) b. Max put [pp in a car] [pp all the boxes of home furnishings]. (heavy NP shift) (12)a. Max put [pp all the boxes of home furnishings] [pp in a car made in Stuttgart].

(long-DP long-PP)

b. Max put [PP in a car made in Stuttgart] [DP all the boxes of home furnishings].

(long-PP long-DP)

Weight config.	Shift advantage?	Parser prediction
Both light	No	No
Heavy PP	No	No
Heavy NP	Yes	Yes (MaxT: 8 vs. 12)
Both Heavy	No	No (MaxT: 14 vs. 12)

Table 1: Summary of the predictions for each weight configuration in object shift constructions

(13) put [_{DP} ...boxes...] [_{PP} in...] canonical order

(14) put [pp in...] [Dp ...boxes...] HNPS order

(13) put [_{DP} ...boxes...] [_{PP} in...] canonical order

(14) put [pp in...] [Dp ...boxes...] HNPS order

Weight → Steps

(13) put [_{DP} ...boxes...] [_{PP} in...] canonical order

(14) put [pp in...] [Dp ...boxes...] HNPS order

- Weight → Steps
- MaxT: 12/V' (canonical)

(13) put [_{DP} ...boxes...] [_{PP} in...] canonical order

(14) put [pp in...] [Dp ...boxes...] HNPS order

- Weight → Steps
- MaxT: 12/V' (canonical) > 8/DP (HNPS)

(13) put [_{DP} ...boxes...] [_{PP} in...] canonical order

(14) put [PP in...] [DP ...boxes...] HNPS order

- Weight → Steps
- MaxT: 12/V' (canonical) > 8/DP (HNPS) → end-weight preferred!

(13) put [_{DP} ...boxes...] [_{PP} in...] canonical order

(14) put [pp in...] [Dp ...boxes...] HNPS order

- Weight → Steps
- MaxT: 12/V' (canonical) > 8/DP (HNPS) → end-weight preferred!
- MaxT(DP) grows with V'

(13) put [_{DP} ...boxes...] [_{PP} in...] canonical order

(14) put [PP in...] [DP ...boxes...] HNPS order

- Weight → Steps
- MaxT: 12/V' (canonical) > 8/DP (HNPS) → end-weight preferred!
- MaxT(DP) grows with V' → relative weight!

(13) put [_{DP} ...boxes...] [_{PP} in...] canonical order

(14) put [pp in...] [Dp ...boxes...] HNPS order

- Weight → Steps
- MaxT: 12/V' (canonical) > 8/DP (HNPS) → end-weight preferred!
- MaxT(DP) grows with V' → relative weight!
 SumT: 18 (canonical) > 15 (HNPS) √

- (15) short DP
 - a. Chris **put on** a hat.
 - b. Chirs put a hat on.
- (16) [mod-DP]
 - a. Chris put on a very very very very expensive hat.
 - b. Chirs put a very very very very expensive hat on.
- (17) [DP-mod]
 - a. Chris **put on** a hat which Alex made with love.
 - b. Chris **put** a hat which Alex made with love **on**.

Weight config.	Joined advt?	MG parser
Short DP	No/Unclear	Yes (MaxT 5 vs. 6)
[mod-DP]	Yes	Yes (MaxT 10 vs. 16)
[DP-mod]	Yes	Yes (MaxT 8 vs. 24)

Table 2: Summary of the predictions for each weight configuration in particle verb constructions

(18) **put on** a very very...hat. Joined order

(19) **put** a very very...hat **on**. Separated order

(18) **put on** a very very...hat. Joined order

(19) **put** a very very...hat **on**. Separated order

• MaxT: 10/hat (Joined)
(18) **put on** a very very...hat. Joined order

(19) **put** a very very...hat **on**. Separated order

• MaxT: 10/hat (Joined) < 16/on (Separated.)

(18) **put on** a very very...hat. Joined order

(19) **put** a very very...hat **on**. Separated order

• MaxT: 10/hat (Joined) < 16/on (Separated.) → end-weight preferred!

(20) V-to-v on left. Joined order

(21) V-to-v on right. Joined order

• V-to-v landing site affects tenure, but not processing prediction

Processing phenomena ↔ Complexity metrics ↔ Syntactic structure

Processing phenomena:

- Processing phenomena:
 - · English end-weight preferences

- Processing phenomena:
 - English end-weight preferences
- · Syntactic structures:

Processing phenomena ↔ Complexity metrics ↔ Syntactic structure

7

- Processing phenomena:
 - · English end-weight preferences
- · Syntactic structures:
 - HNPS: rightward movement \searrow
 - PV: particle stranding

Processing phenomena ↔ Complexity metrics ↔ Syntactic structure

- Processing phenomena:
 - · English end-weight preferences
- · Syntactic structures:

 → End-weight preference follows from the processing difficulties associated with the syntactic structure of competing word orders.

Processing phenomena ↔ Complexity metrics ↔ Syntactic structure

Processing phenomenon:

- Processing phenomenon:
 - · Japanese initial-weight preference

- Processing phenomenon:
 - · Japanese initial-weight preference
- · Syntactic structures:

- Processing phenomenon:
 - · Japanese initial-weight preference
- · Syntactic structures:
 - Scrambling Complexity metric
 Base-generation Z

- Processing phenomenon:
 - · Japanese initial-weight preference
- · Syntactic structures:

- Processing phenomenon:
 - · Japanese initial-weight preference
- · Syntactic structures:

Thank you!

References i

Cappelle, B. (2005). Particle patterns in english: A comprehensive coverage.

Chomsky, N. (2014). The minimalist program. MIT press.

- Graf, T. (2013). Local and transderivational constraints in syntax and semantics. PhD thesis, UCLA.
- Graf, T., Fodor, B., Monette, J., Rachiele, G., Warren, A., and Zhang, C. (2015a). A refined notion of memory usage for minimalist parsing. In *Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015)*, pages 1–14, Chicago, USA. Association for Computational Linguistics.
- Graf, T., Fodor, B., Monette, J., Rachiele, G., Warren, A., and Zhang, C. (2015b). A refined notion of memory usage for minimalist parsing. In Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015), pages 1–14.
- Kobele, G. M., Gerth, S., and Hale, J. (2013). Memory resource allocation in top-down minimalist parsing. In Formal Grammar, pages 32–51. Springer.
- Stabler, E. (1996). Derivational minimalism. In International Conference on Logical Aspects of Computational Linguistics, pages 68–95. Springer.
- Stabler, E. P. (2011). Computational perspectives on minimalism. Oxford handbook of linguistic minimalism, pages 617–643.
- Stabler, E. P. (2013). Two models of minimalist, incremental syntactic analysis. Topics in cognitive science, 5(3):611–633.
- Stallings, L. M. and MacDonald, M. C. (2011). It's not just the "heavy np": relative phrase length modulates the production of heavy-np shift. *Journal of psycholinguistic research*, 40(3):177–187.
- Torr, J. and Stabler, E. (2016). Coordination in minimalist grammars: Excorporation and across the board (head) movement. In Proceedings of the 12th international workshop on tree adjoining grammars and related formalisms (TAG+ 12), pages 1–17.

No/Unclear Short PV?

- · truly default order?
- · other factors?

(24) • C Max T v packed boxes.

(24) • C Max T v packed boxes.

Step 1	CP is conjectured	look for C
Step 2	CP expands to C and TP	look for C
Step 3	C is found	look for Max
Step 4	TP expands to TP	look for Max
Step 5	TP expands to ${f T}$ and ${f vP}$	look for Max
Step 6	${ m vP}$ expands to ${ m Max}$ and ${ m v'}$	look for Max
Step 7	Max is found	look for T
Step 8	T is found	look for v
Step 9	u' expands to $ u$ and $ VP$	look for v
Step 10	v is found	look for packed
Step 11	VP expands to packed and b	oxes look for packed
Step 12	packed is found	look for boxes
Step 13	boxes is found	done

(24) • C Max T v packed boxes.

Step 1	CP is conjectured	look for C
Step 2	CP expands to C and TP	look for C
Step 3	C is found	look for Max
Step 4	TP expands to TP	look for Max
Step 5	TP expands to ${f T}$ and ${f vP}$	look for Max
Step 6	${ m vP}$ expands to ${ m Max}$ and ${ m v'}$	look for Max
Step 7	Max is found	look for T
Step 8	T is found	look for v
Step 9	u' expands to $ u$ and $ VP$	look for v
Step 10	v is found	look for packed
Step 11	VP expands to packed and b	oxes look for packed
Step 12	packed is found	look for boxes
Step 13	boxes is found	done

(24) • C Max T v packed boxes.

(24) • C Max T v packed boxes.

(24) **C** • Max T v packed boxes.

(24) **C** • Max T v packed boxes.

(24) **C** • Max T v packed boxes.

(24) **C** • Max T v packed boxes.

(24) **C** • Max T v packed boxes.

(24) **C** • Max T v packed boxes.

(24) **C** • Max T v packed boxes.

(24) **C** • Max T v packed boxes.

(24) **C** • Max T v packed boxes.

(24) C Max • T v packed boxes.

(24) C Max $T \bullet v$ packed boxes.

(24) C Max $T \bullet v$ packed boxes.

(24) C Max $T \bullet v$ packed boxes.

(24) C Max $T \bullet v$ packed boxes.

(24) C Max T $v \bullet$ packed boxes.

(24) C Max T $v \bullet$ packed boxes.

(24) C Max T $v \bullet$ packed boxes.

(24) C Max T $v \bullet$ packed boxes.

(24) C Max T v packed • boxes.

(24) C Max T v packed boxes. \ltimes

